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Abstract  The self-consistent field theory (SCFT) based upon coarse-grained model is especially 
suitable for investigating thermodynamic equilibrium morphology and the phase diagram of inhomo-
geneous polymer systems subjected to phase separation. The advantage of this model is that the 
details of the chain such as the architecture of the chain and the sequence of blocks can be consid-
ered. We present here an overview of SCFT approach and its applications in polymeric systems. In 
particular, we wish to focus on our group’s achievements in applications of SCFT in such fields: 
simulation of microphase separation morphologies of multiblock copolymers with a complex molecular 
architecture, interactions between brush-coated sheets in a polymer matrix, mixtures of flexible poly-
mers and small molecular liquid crystals at the interface, shapes of polymer-chain-anchored fluid 
vesicles, self-assembled morphologies of block copolymers in dilute solution, and so on. Finally, the 
further developments as well as the perspective applications of SCFT are discussed. 

Keywords: self-consistent field theory, block copolymer, microphase separation. 

1  Introduction 

Owing to the specificity of the long chain, polymers 
present complexity and versatility. These molecules in 
the system can be various in their topological struc-
tures, such as linear, star, comb or circle structures; 
meanwhile they can be polymerized by different 
methods or in different types of monomers to make the 
diblock, triblock or random copolymers. Due to the 
great internal free degree, the repulsive interaction 
between the chemically different blocks and chemical 
connectivity of chains drives the system to self-assem-  

ble into a variety of ordered structures[1]. Obviously, 
the biggest challenge is to deal with phase behavior 
and morphologies of block copolymers with such a 
complicate molecular architecture. 

During the last four decades, weak-segregated and 
strong-segregated polymer theories have been devel-
oped based on statistical mechanics[2―6]. So far, one of 
the most wildly used theories is the SCFT[6], which is 
the most accurate with only least hypothesis on the 
level of mean-field and can be applied to describing 
the configuration of polymer chains in detail. In par-
ticular, thermodynamic equilibrium properties of block 
copolymer systems have been treated successfully by 
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SCFT, which can consider not only topological struc-
tures of chains (linear, star, comb, etc.) but also other 
details such as how the chain length and the interac- 
tion between segments influence the phase behavior. 
Furthermore, SCFT is a precise theory of wide appli- 
cation ranging from weak-segregated to strong-segre- 
gated conditions. 

In this article, we will discuss the thermodynamic 
equilibrium and meta-stable properties of polymeric 
systems by using SCFT, especially combining our re-
cent new progresses. We focus on the fields of the 
equilibrium phase structures, such as the meso-scale 
phases of block copolymers, the equilibrium state of 
liquid-crystal containing systems, the interaction be-
tween nano-particals and branched polymer chains, 
and shapes of polymer chains anchored vesicles, etc.  

2  SCFT framework 

2.1  Path integral of chains 

The essential part of SCFT is the so-called coarse- 
graining method, in which a chain of the length N is 
simplified as a Brown particle’s random walking path 
after N steps diffusion, keeping the profile of long 
chain characteristics and neglecting the details on at-
oms and groups, as shown in Fig. 1. 

 
Fig. 1.  Schematics of coarse-graining course. If we neglect the details 
on atoms and groups, the whole chain can be regarded as an array of 
coarse-grained segments. Furthermore, the chain can be simplified as a 
smooth curve (path) R(s), 0<s<N. 
 

If we regard the path variable s as time and define 
R(s) to be the position vector function, the Hamilto-
nian of the Brown particle in a time depending exter-
nal field V(R(s)) is given by[7]: 
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where the first term is the kinetic energy of the Brown 
particle, while the second is the potential energy, and b 
is the Kuhn length. We define Q(r, r′; s) to be the 
probability of a particle starting its travel from posi-
tion r′ and stopping at r in the time interval (0, s). Sum 
over all spatial curves of length N between r′ and r, 
then the partition function can be obtained in terms of 
the Feynman formulas used for quantum dynamics[7]:  
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Here, the ( )D sα∫ R  denotes functional integrations 

over all possible conformations, called the path inte-
gration. Obviously, Q(r, r′; s) should satisfy the diffu-
sion equation[7]:  
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subject to the initial condition Q(r, r′; 0) = δ (r−r′). 
Actually, this is Schrödinger function with the imagi-
nary time. With the aids of well-developed methods in 
quantum physics, the partition function of a single 
chain may be solved. 

The revolution thought as described above was first 
introduced by the British theoretical physicist Edwards 
in 1965 when he was working on the size of a self- 
avoid walking coil[8,9]. Actually, this problem had been 
solved by Flory in the nineteen fifties by simply esti-
mating the polymer’s configuration entropy and repul-
sion energy, obtaining a scaling exponent of 3/5[10]. 
But Edwards did not know Flory’s work at that time. 
He proved that the spatial figure of a self-avoid walk-
ing chain can be explained as the path of a particle 
diffusing in an external field V(r), and the movement 
function has the same form of Schrödinger function 
with imaginary time. Edwards followed this idea and 
obtained a self-avoid walking chain’s gyration radius 
RG∝ N3/5, in good agreement with Flory’s previous  
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results. The profound meaning in Edwards’ work is 
that it was the first time to compare the configuration 
of a polymer chain with the movement of a particle. It 
revealed the deep relationship between polymer phys-
ics and the quantum field theory. The assistance from 
quantum field theory[11] has greatly accelerated the 
development of polymer condensed physics.  

2.2  Mean filed theory of many-chain systems 

As a starting point in the derivation of the theory, 
the partition function of the system is required. Con-
sidering a mixture of α components with the number 
of the αth component being nα, the partition function 
of the system in the canonical ensemble is given by  
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 (4) 
where Λα is the thermal deBrogie wavelength of the α 
component. The total Hamilton of this system can be 
written as 
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In the similar way, the grand canonical partition 
function of this system can be expressed in the fol-
lowing form: 
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where µα is the chemical potential of the α compo-
nent. 

The above-described partition function can be used 
in a wide range of applications. We consider a poly-
meric system which consists of nα polymer chains. 
Each chain consists of Nα monomers of species κ. The 
polymer can then be represented by continuous-space 
curves Rα(s), with s varying between 0 and Nα. The 
distribution of monomers κ on the chains is conven-

iently described by function ( ) [type ( ) ]s sκ
α αγ δ κ= − , 

which meets ( ) 1sκ
α

κ
γ =∑ , where type ( )sα  is de-

fined as the type of the sth monomer on the kind of α 
chain. For a given configuration {Rα(s)}, one can de-
fine a local monomer density operator ˆ ( )κρ r [12]: 
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Further considering the orientation of polymer 
segment in some systems such as liquid crystals, an-
other oriented order parameter is needed[13]:  
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where ( )iu sα  is the orientation of the s segment on 

the i molecule of α component. In the system of 
polyelectrolyte, there are relevant definitions of the 
density operator[14]. Thus, the interaction Hamiltonian 
can be written as 
 int int ˆ[{ ( )}] [{ ( )}]H s Hα κρ=R r , (9) 

where ˆ ( )κρ r  denotes all kinds of density operators 
which depend on Hint. 

Here, it is useful to introduce the collective vari-
ables of density operators, ˆ ˆκ κ κρ ρ ρ= 〈 〉 ≡  to solve 
the partition function readily. It is useful to introduce 
δ-functions and their Fourier transforms: 
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where Wκ is conjugate potential of density field ρκ. 
This is called Hubbard-Stratonovich transformation 
and also called Edwards transformation in the theory 
of polymeric statistics[15]. Then, the partition function 
is transformed into: 
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where the functional is βF = F/kT: 
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where Qα denotes the partition function of the α com-
ponent in the potential field Wκ.  
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where qα(r, Nα) is the end segment distribution func-
tion and is defined as 
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where qα (r, s) represents the probability distribution 
of monomer s at r. 

For the components which have no internal con-
figuration, such as solvent, rigid-rod, rigid sphere etc., 
the Hamilton of these components is taken to be Hα

0 = 
0, and thereby the distribution function of chain seg-
ment is 
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For flexible polymers, the entropy due to the inter-
nal conformations should be included. The entropy 
can be obtained from the “string” with Kuhn length of 
b, and thus the combination of corresponding Hamil-
tonian and the interaction Hamiltonian is given by 
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where 23/ 2bκ  is the spring constant. Such as the 
block polymer, the two ends of chains are distinct and 
a second end-segment distribution function q*

α (r, s) is 
needed. qα(r, s) and q*

α (r, s) satisfy the following 
modified diffusion equation[7], respectively:  
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with initial condition qα (r, 0)=1 and * ( , ) 1q Nα α =r , 
respectively. 

For semi-flexible polymers, the configuration is af-
fected by the bending rigidity as well. Rather than the 
Gaussian chain model, the worm-like chain model is 
adopted. The detailed expression of the Hamiltonian 
for semi-flexible chains can be found in ref. [16].  

After Hubbard-Stratonovich transformation, the 
grand canonical partition function and the grand ca-

nonical potential can be written as 
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Assume that there are only short-range interactions 
in the system of flexible polymer, and thus the Flory- 
Huggins interaction parameter is taken to be κκχ ′  
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2 κκ κ κ κκε ε ε′ ′ ′= + −  and the interaction Hamilto-

nian reads: 
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For liquid crystals, the interaction Hamiltonian is[13] 
 int d ( ) : ( )ij ijH S Sν= ∫ r r r , (20) 

where ν is Maier-Saupe interaction parameter, denot-
ing anisotropy interactions due to the orientation. 

2.3  Mean-field approximation (saddle-point ap-
proximation) 

Although the free energy functional βF and βG can 
be obtained according to eqs. (12) and (18), the exact 
evaluation of the integral of functional is not possible. 
In the self-consistent mean-field theory, many inter-
acting chains are reduced to that of independent chains 
subject to an external (mean) field, created by the 
other chains. Owing to the mean-field approximation, 
the functional can be evaluated by using a saddle-point 
technique. Differentiating eq. (12), we can obtain the 
minimum of the integrand. In this case, F≈FMF = FSCFT 

= F(φκ, ωκ) = −kBTlnZ, where φκ and ωκ are saddle 
point values under the condition of the minimum free 
energy. The SCFT equations are as follows: 
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where qα(r,τ) and * ( , )qα τr  are end-segment distribu-
tion functions, respectively, satisfying diffusion equa-
tion (17). For clarity, the old density and potential ρκ 
and Wκ are replaced with saddle point values φκ and 
ωκ. ωκ is often called self-consistent molecular poten-
tial. 

In general, the system is often subjected to different 
confinements. The most common is the impressibility, 
namely 0κκ ρ ρ=∑ . In terms of a Lagrange multi-

plier, the confinement is introduced to the free energy 
directly, for example, 0d ( ) ( ) .κκ

ξ ρ ρ − ∑∫ r r r  ξ(r) 

is introduced to ensure the impressibility condition of 
the system and is given by 

 int ( )
H

κ
κ

δω ξ
δρ

= + r . (24) 

ω and φ are solved by self-consistently iterative 
procedure, and then the partition function of a single 
chain and further the free energy of the system are 
obtained. Moreover, the stability of different structures 
can be verified by checking the free energy. 

We must note that the above described mean field 
approximation does not consider the concentration 
fluctuation, which is asymptotically exact when the 
molecular weight is high enough and the system is far 
beyond the critical phase transition temperature. We 
also note that the distribution function qα(r,τ) and 

* ( , )qα τr  are not only used to calculate the concentra-
tions of different species, but also keep the informa-
tion about the conformation of the chain, which can be 
used to obtain the properties of the chains at the inter-
face or confined to the wall. 

The numerical implementation of the above self- 

consistent equations (21) (24) with diffusion equa-
tion (17) first proposed by Matsen and Schick[6] has 
been successfully used to calculate the phase behavior 
of diblock copolymers. However, this method requires 
prior assumed mesophase symmetry and thus the dis-
covery of new complex morphologies is limited. In 
recent years, real space implementation SCFT directly 
using a combinatorial screening algorithm proposed 
by Drolet and Fredrickson[17] has been extensively 
used to explore the phase structure of complex mul-
tiblock copolymers. The algorithm consists of ran-
domly generating the initial values of the fields ωκ (r). 
Eqs. (21) (24) are solved iteratively until the solution 
becomes self-consistent. We refer the interested reader 
to see refs. [12, 17] for details. 

3  Applications of SCFT in polymeric systems 

3.1  Microphase morphologies of complex block co-
polymers 

A block copolymer is a chain molecular consisting 
of two or more chemically different homopolymers 
joined covalently. In general, due to the intricate bal-
ance of the interfacial energy and conformation en-
tropy, the block copolymers microphase separate to 
form a rich variety of periodic nanostructures. Block 
copolymers are useful in many applications, such as 
thermoplastic elastomers, rubber toughened plastics, 
adhesives, coating, and so on[18]. These nanostructures 
are thermodynamically stable and a typical periodicity 
is in the range 5 100 nm, and thus can be used for a 
kind of nanocomosites. In recent ten years, self-as- 
sembled morphologies of block copolymers may be 
used to template the fabrication of nanostructures in 
other materials, such as nanodots or nanotube array[19], 
mesoporous solids[20] and photon crystals[21]. The pre-
diction of microphase separation morphologies of AB 
diblock copolymers has been studied successfully for 
many years due to the exciting development of con-
densed physics theory in recent two decades. Our 
group investigated the self-assembled morphologies 
and phase diagram of ABC triblocks with different 
architectures[22,23].  

For block copolymers, there exist polymerized 
block numbers and topological structures. Take an 
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example for ABC triblock copolymers, there are at 
least the following topological structures, as shown in 
Fig. 2.  

Consider a system with volume V of n ABC 
triblock copolymers. The degree of polymerization of 
the block copolymer is N and the A, B, and C blocks 
consist of fAN, fBN, and fCN monomers, respectively. 
Each polymer is parameterized with the variable s, 
which increases along each chain. 

In contrast to AB diblock copolymers, however, as 
the number of distinct blocks is increased from two to 
three, say ABC triblocks, both the complexity and 
variety of self-assembled structures are significantly 
increased. For example, the controlling parameters, 
such as χAB, χAC, χBC, fA, fB, fC, N, and so on, could 
increase 18 times. In recent years, about 20 micro-
phase structures have been found including core-shell 
lamellae, gyroids, cylinders and spheres, and their 
combinations, such as spheres in cylinders, cylinders 
in lamellae, rings on cylinders, and even some amaz-
ing knitting pattern[24,25]. Unfortunately, some of these 
new structures are found theoretically and not yet con-
firmed by the experimental work. 

Using a real space implementation of the self-con- 
sistent field theory (SCFT) for polymeric system pro-
posed by Drolet and Fredrickson[17], we develop an 
efficient SCFT algorithm for complex architectures of 
multiblock copolymers[22]. By using this method, we 
explore microphases of ABC linear triblock copoly-
mers in a two dimensional space. Seven microphases 
are found to be stable for the ABC triblock in 2D, 
which include lamellae, hexagonal lattice, core-shell 
hexagonal lattice, tetragonal lattice, lamellae with 

beads inside, lamellae with beads at the interface, and 
hexagonal phase with beads at the interface, as shown 
in Fig. 3. 

By systematically varying the composition, triangle 
phase diagrams are constructed for four classes of 
typical triblocks in terms of the relative strengths of 
the interaction energies between different species (see 
ref. [22] for details). In general, when both the volume 
fractions and interaction energies of the three species 
are comparable, lamellar phases are found to be the 
most stable. While if one of the volume fractions is 
large, core-shell hexagonal, or tetragonal phase can be 
formed, depending on which of the blocks dominates. 
Furthermore, more complex morphologies, such as 
lamellae with beads inside, lamellae with beads at the 
interface, and hexagonal phase with beads at the inter-
face compete for stability with lamellae structures, as 
the interaction energies between distinct blocks be-
come asymmetric. 

In particular, for ABC triblock copolymers, the 
phase behavior depends strongly on sequencing of the 
blocks. For example, when the volume fractions of 
three components are comparable, lamellae phase can 
be changed into core-shell structure. It is interesting to 
note that in the strong-segregation limit the same ef-
fect has also been examined by Zheng and Wang[16]. 
Experimentally, a lamellar phase in 1:1:1 poly (iso-
prene-b-styrene-b-2-vinylpyridine) (ISP) has been ob-
served by Mogi et al.[26], while a co-axial cylinder 
phase was found in SIP by Gido et al.[27], as shown in 
Fig. 4. Our calculation based upon SCFT provides 
guidance to the design of new microstructures in com-
plex block copolymers. 

 

 
Fig. 2.  Architectures of ABC triblock copolymers. (a) Linear, including different sequences of blocks, such as ABC, BCA, and CAB; (b) star; (c) 
ring. 



Applications of SCFT in polymer systems 27 

 

 
Fig. 3.  Schematic ordered morphologies for ABC linear block copolymers. A (red), B (green) and C (blue). (a) “three color” lamellar phase (LAM3); 
(b) hexagonal lattice phase (HEX); (c) core-shell hexagonal lattice phase (CSH); (d) two interpenetrating tetragonal lattice phase (TET2); (e) lamellar 
phase with beads inside (LAM+BD-I); (f) lamellar phase with beads at the interface (LAM+BD-II); (g) hexagonal phase with beads at the interface 
(HEX+BD)[22]. 

 

 
Fig. 4.  (a) TEM morphologies of PS-PI-P2VP from ref. [26]; (c) TEM 
morphologies of linear BAC triblock copolymer PI-PS-P2VP from ref. 
[27]; (b) and (d) are corresponding calculated self-assembled mor-
phologies of linear ABC and BAC copolymers by using SCFT[22]. 
 

In contrast to linear ABC triblocks, the microphase 
separation behavior of star ABC triblocks in Fig. 2(b) 
is more complicated due to the junction constraint of  

the center cores that regulates the geometry of the mi-
crophases formed[23]. In 2D, nine stable microphases 
are uncovered, shown in Fig. 5, including hexagonal 
lattice, core-shell hexagonal lattice, lamellae, lamellae 
with beads at the interface, as well as a variety of 
complex morphologies that are absent in linear ABC 
triblocks, such as “three-color” hexagonal honeycomb 
phase, knitting pattern, octagon-hexagon-tetragon 
phase, lamellar phase with alternating beads, and 
decagon-hexagon-tetragon phase. A similar morphol-
ogy with the same composition is obtained by Gemma 
et al. in their Monte-Carlo simulations[28], by Liang et 
al. in terms of dynamic density functional[29], and Bo-
hbot-Raviv and Wang in terms of density functional 
theory[30]. 

It is interesting to note that the recent experimental 
work by Takano and coworkers[31] confirms our simu- 
lation[23], as shown in Fig. 6. Three-color hexagonal 
honeycomb phase (HEX3), 8-8-4, 10-6-4 and 12-6-4 
phase characterized by TEM was found for PS-PI- 
P2VP star triblock copolymers, similar to our predic-
tion. Moreover, our predicted phase is qualitatively in 
agreement with the experimental findings by Thomas 
et al.[32], who studied star triblocks of polystyrene (PS), 
polyisoprene (PI), and poly(methyl methacrylate) 
(PMMA). 
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Fig. 5.  Schematics of the 2D ordered microphases for ABC star triblock copolymers. A (red), B (green) and C (blue). (a) Hexagonal lattice phase 
(HEX); (b) core-shell hexagonal lattice phase (CSH); (c) “three-color” lamellar phase (LAM3); (d) “three-color” hexagonal honeycomb phase (HEX3); 
(e) knitting pattern (KP); (f) octagon-hexagon-tetragon phase (OHT); (g) lamellae phase with alternating beads (LAM+BD); (h) deca-
gon-hexagon-tetragon phase (DEHT); (i) lamellae phase with beads at the interface (LAM+BD-I)[23]. 
 

 
Fig. 6.  (a) TEM morphologies (HEX3) of star PS-PI-PMMA from ref. [31]; (b) our simulation morphology by using SCFT[23]. 

 

 
Fig. 7.  (a) TEM morphologies (LAM+BD-II) of linear PS-PI-PMMA from ref. [31]; (b) our simulation morphology by using SCFT[23]. 
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Furthermore, as shown in Fig. 7, the lamellae phase 
with beads at the interface (LAM+BD-I) found in Fig. 
5(i) was also obtained by Takano and coworkers[31]. 

By systematically varying the composition, the tri-
angle phase diagrams are constructed for ABC star 
triblocks both with symmetric and asymmetric interac-
tion parameters among the three species[23]. It is found 
that when the volume fractions of the three blocks are 
comparable, the star architecture plays a profound role 
in the complex microphase formation. However, when 
one of the blocks is relatively short with χN values not 
very large, the star architecture is less important and 
therefore the phase behavior is similar to that of linear 
triblocks. In general, the triangle phase diagrams we 
present, as a first step, may be used as guidance to 
designing possible ordered structures of star ABC 
triblock copolymers in terms of the composition, and 
the values of interaction energies and their relative 
strengths. 

3.2  Interfacial effects of flexible polymers with small 
molecular liquid crystals 

Polymer composites containing liquid crystal have 
been developed for applications in the field of liquid 
crystal reinforced composites and especially display 
device. Concerning the forming process of liquid 
crystal, many physical properties of the liquid crystals 
are largely influenced by the interfacial effects[33―35]. 
The following will discuss the SCFT applications in 
polymeric systems with liquid crystals. 

Owing to anisotropy of liquid crystals, the phase 
behavior of mixtures of flexible polymers and small 
liquid crystalline molecules is quite complicated. By 
combining Flory-Huggins solution theory and Maier- 
Sauper or Lebwohl-Lasher liquid crystal theory, the 
free energy and static phase diagram of mixtures of 
flexible polymers and small molecular liquid crystals 
have been obtained by our group[36,37]. The results 
showed that the coexistence of liquid-liquid and liq-
uid-nematic two-phase regions is due to the ordering 
of the liquid crystal, which are consistent with those 
obtained by Monte Carlo simulation[38]. We also stud-
ied the interface of mixtures by using Lebwohl-  
Lasherliquid crystal and Helfand lattice SCFT[39], and 
verified the results with Monte Carlo simulation[40]. 
However, theoretical results reveal that flexible poly-

mers are almost excluded completely from the ordered 
liquid crystal rich phase to form narrow interface due 
to the ordering of liquid crystal molecules when liq-
uid-nematic phase separation occurs. As a result, the 
interface size is comparable to the lattice size leading 
to the lattice model only suitable for the case of shal-
low quench, namely wide interface. Thereby it is de-
sired to develop continuum SCFT instead of lattice 
SCFT for a wide range of applications. 

For the anisotropic liquid crystal system, Maier- 
Saupe interaction Hamilton (eq. (20)) must be in-
cluded and is introduced to general SCFT in sec. 2 to 
obtain the following SCFT equations[41]: 
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 p l( ) ( ) 1φ φ+ =r r , (29) 

where P2(cosθ) is second Legendre function, λp and λl 
are Lagrange multipliers to ensure constant concentra-
tion φp and φl, respectively. χpl and χll are Flory-Hug- 
gins isotropic interaction between polymers and liquid 
crystals and Maier-Saupe anisotropic interaction be-
tween liquid crystal molecules, respectively. The seg-
ment distribution function of flexible polymers q(r, s) 
satisfies the following diffusion equation with initial 
condition q(r, 0) = 1: 
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When spatial inhomogeneousness is neglected, the 
equations in refs. [36, 37] for liquid crystal polymeric 
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systems can be recovered from the above equation 
(30). Moreover, by taking advantage of the thermody-
namics, the equilibrium phase diagram is readily ob-
tained[36,42]. As we only care the interfacial property in 
the following discussion, the above SCFT equations 
can be solved only along the interface normal, say z. 

The calculated interfacial density and orientation 
order parameter profiles are shown in Fig. 8. It is 
shown by Fig. 8(a) that the interface between flexible 
polymers and liquid crystals is very narrow, only 
~1.2b. When liquid crystal rich phase goes into poly-
mer rich phase, the decrease of liquid crystal concen-
tration at the interface undergoes similar first order 
phase transition of liquid crystal orientation order pa-
rameter, shown in Fig. 8(b). 

Obviously, when the repulsive interaction between 
polymers and liquid crystals or anisotropic interaction 
between liquid crystal molecules is strong, the inter-
face will be narrower and the liquid crystal concentra-
tion in polymer rich phase is low. However, the con-
centration of polymers in liquid crystal rich phase is 
relatively low and is not affected by the value of χpl 
since the situation of polymers in liquid crystals is not 
favorable for the conformation entropy. The orienta-
tion parameter S of liquid crystal rich phase depends 
on the value of χll, the bigger χll; the larger S.  

It is not surprising that the width of the interface 
and interfacial tension depend on the polymer length. 
In Fig. 9, when the phase separation is driven by the 
ordering of liquid crystals, the increase of the length of 
flexible polymers leads to increase in repulsive inter-
action between polymers and liquid crystals, while the 
width of the interface ς is constant with variation of 

polymer length.  
Furthermore, the basic results by using continuum 

SCFT developed by our group are consistent with 
those obtained by Helfand lattice interface model[39] 
and lattice Monte Carlo simulations[40]. We believe 
that continuum SCFT covers a wide range of applica-
tions and should be very useful for designing liquid 
crystal polymeric materials.  

3.3  Interactions between brush-coated clay sheets 
and polymer matrix 

Polymeric nanocomposites are composed of poly-
mers and dispersed inorganic particles with at least 
one dimension at nanoscale. It is now generally under-
stood that for polymeric nanocomposites to achieve 
these improved properties the inorganic particles have 
to be molecularly dispersed within the polymer ma-
trix[43]. In practice, however, the van der Vaals interac-
tions between the inorganic particles are always attrac-
tive, which result in the aggregation or flocculation of 
the particles. It is, thus, important to tailor the surfaces 
of the particles to control the surface force. One com-
mon means is to end-graft polymer chains onto the 
particle surfaces, forming what is usually referred to as 
a polymer brush. Although the scaling analyses were 
rather successful in giving qualitative prediction and 
interpretation of experimental observations[44―47], they 
were limited in providing detailed information about 
the specific density profiles and interactions of the 
polymer brush/melt systems. Using a continuous one 
dimensional self-consistent field theory, Ferreira et al. 
performed a systematic exploration of the parameter 
space of a polymer protected surface in contact with a 

 

 
Fig. 8.  (a) Variation of interfacial density profiles φI(z) with different interaction parameters (∝ 1/kT); (b) orientation order parameter along the in-
terface. The distance from the interface is measured in unit of Kuhn length[41]. 
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Fig. 9.  Dependence of the interfacial width and the interfacial tension 
upon the chain length of polymers with χll = 5.0, χlp = 0[41]. 
 
melt[48]. Their calculation shows that due to subtle en-
tropic effects the melt chains are expelled from the 
grafted layer, even if they are chemically identical to 
the grafted chains, and the interactions between the 
clay sheets can be purely repulsive or repulsive at 
short distances and attractive at longer distances. 
However, such scaling regimes with intermediate 
sheet length, which is important to applications of 
nano-sheets, have entirely been left out by the previ-
ous theoretical studies. Attempting to deal with this 
practically useful case of intermediate sheet lengths, 
here we report numerical calculations that do not im-
pose any assumption on the sheet length. By using the 
continuum SCF formulism originally developed by 
Edwards and extended to multicomponent mixtures by 
Hong and Noolandi, the morphologies and interaction 
potentials of the brushcoated clay sheets/polymer melt 
system have been carried out by our group[49]. 

We consider a system of two parallel clay sheets 
with a distance H along the x-axis and grafted with nα 
polymer chains of polymerization index N (Fig. 10) 
and the grafting density of the grafted chains is given 
by 

 / 4( )bn L Wασ = + , (31)  

where L and W are the lateral length along the z-axis 
and the thickness of the clay sheets, respectively. The 
average volume fraction of the grafted chains is de-
fined as 
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where nβ and Nβ are the number and the length of 
polymer chains, respectively; V is the volume and ρ0 is 
the reference density. 
 

 
Fig. 10.  Schematic diagram illustrating the variables used in the cal-
culation. Note that H is the distance between the two front surfaces of 
the clay sheets[49]. 
 

The probability, qα(r, s), that a grafted chain ends at 
r in s steps having started at the surfaces of the clay 
sheets satisfies a modified diffusion equation (eq. 
(30)), but with the initial condition, qα(r = rc, 0) = 1, 
qα(r ≠ rc, 0) = 0, and the boundary condition qα(r = rc, 
s) = 0. Because the two ends of the grafted chains are 
distinct, a second end-segment distribution function, 

* ( , ) 1q Nα α =r , is needed according to eq. (17), with 

the initial condition, * ( , ) 1q Nα α =r , and the boundary 

condition, *
c( , ) 0q sα = =r r . For the free chains β, the 

two ends are identical, therefore, only one end-seg- 
ment distribution function is needed, and the equation 
of qβ(r, s) is similar to eq. (30) with the initial condi-
tion, qβ(r, 0) = 1, and the boundary condition, qβ(r=rc, 
s) = 0. These SCFT equations can be real space im-
plemented. 

The interaction between the two polymer brushes 
also alters the structure of the brushes. As an example, 
we first illustrate in Fig. 11 the distribution of the 
monomer density for two clay sheets at different dis-
tances H. In Fig. 12, we present the free energy plots 
as a function of the distance H for different values of 
grafting densities and lateral lengths, respectively. 
From Fig. 12, we can clearly see that the minimum of 
the free energy appears at higher grafting density and 
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Fig. 11.  Distribution of total monomer density of the grafted chains. 
(a) Nα = Nβ = 50, σ = 0.25, L = 31, W = 3; (b) Nα = Nβ = 50, σ = 0.25, L 
= 3, W = 3. The monomer density in the white region is higher than that 
in the dark region and the dark rectangles with different lengths in the 
center of the white region represent the clay sheets[49]. 

longer lateral length, when the distance between the 
two front surfaces is relative, for example, H~22. Fur  

thermore, higher grafting density and longer lateral 
length are favorable for large brush separations, and 
hence for repulsive interaction. In other words, the 
clay sheets may arrange periodically. These findings 
may have various implications for creating novel 
polymeric nanocomposites. 

As shown in Fig. 13, we calculate in a systematic 
way the locus of points N, P, L, and σ at which the 
attractive interaction disappears. For the fixed value of 
N, P, and L, the grafting density was varied until the 
first value of σ, for which the free energy of interac-
tion becomes negative, was found. Obviously, the re-
sult can be the guidance to the design of polymeric 
nanocomposites. 

As shown in Fig. 10, the mass center of the two 
sheets has the same z coordinates. For more common 
cases, the coordinates of mass center of the two sheets 
are set to be (x, z) = (H//, H⊥ ), H// is the distance of the 
mass center along x direction, and H⊥  is the distance of 
the mass center along z direction. The free energy as a 
function of (H//, H⊥ ) is shown in Fig. 14[50]. 

We should mention that it is straightforward to ex-
tend the present 2D model to other complicated sys-
tems. For example, when the lateral length L and the 
thickness W of the sheet are comparable, this model 
can be used for spherical clay. In summary, the results 
in terms of continuum SCFT indicate that the 
structureand interactions of the brush-coated clay 
sheets can be tailored by varying the grafted chain 
length and/or the lateral length of the clay sheets to 
benefit the fabrication of polymer/clay nanocompo- 

 

 
Fig. 12.  (a) Free energy of interaction of two brushes as a function of the distance H for different grafting densities, Nα = Nβ = 50, L = 31, W = 3; (b) 
free energy of interaction of two brushes as a function of the distance H for different lateral lengths, Nα = Nβ = 50, σ = 0.25, W = 3[49]. 
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Fig. 13.  Locus of points (N, σ, L) that characterize the beginning of 
the expulsive of the mobile chains from the grafted layer. Results are 
presented for N= P = 30 (filled circles) and N = P = 50 (squares). The 
solid and dashed curves are the sketch of the proposed scaling function. 
Region I denotes an interaction with an attractive part and region II 
denotes a purely repulsive interaction. 
 
sites. 

3.4  Shape transformation of fluid vesicles anchored 
by polymers 

Biological membrane is not only the basic unit of 
the cell structure, but also the structural foundation to 
provide the life activity. Biological membrane is in 
close relation with many life processes, such as energy 
transformation, substance transportation, signal recog-
nition and transduction, cell growth and differentiation, 
and nerve conduction. The backbone of the cell mem-
brane is given by the self assembled lipid bilayer. In 

biological systems, the membranes are often “deco-
rated” by a large number of macromolecules, such as 
proteins, cholesterol and carbohydrate. for example, 
membrane-spanning proteins embedded in the plasma 
membrane of animal cell. The glycocalyx is formed by 
coupling the polysaccharose brush with the mem-
brane-spanning proteins on the cell outside[51]. As 
shown in Fig. 15, the vesicle which is anchored by 
polymer chains is a simplified model of biological cell. 
The vesicle membrane usually is impenetrable by most 
biomacromolecules. Complex shape changes, such as 
budding, pearling, and coiling of the vesicles, can be 
induced even when a very small amount of polymer 
chains are anchored and/or adsorbed onto the mem-
branes[52,53]. These subtle shape changes of vesicles 
with anchored polymers have also drawn theoretical 
attention[54―56]. Analytical calculations and Monte 
Carlo simulations reveal that the anchored chains can 
induce local inhomogeneities of the bending rigidity 
and spontaneous curvature of the membrane[54,55]. 
Adsorption of polymers anchored to membranes was 
also investigated and for strong adsorption a decrease 
of the entropically induced membrane curvature was 
predicted[57]. So far, theoretical studies have accounted 
for the altering of the spontaneous curvature and 
bending rigidity of an infinitively large planar mem- 
brane. For vesicles, however, due to the closure of the 
membranes, a different model for closed vesicles with 
anchored polymers, which has more biological rele-
vance, is needed. We proposed an approach that com-
bines the Helfrich curvature elasticity theory for fluid 

 

 
Fig. 14.  The free energy of interactions as a function of (H//, H⊥ ) for different grafting densities, Nα = Nβ = 50, L = 31, W = 3. (a) σ = 0.039, no at-
tractive interactions well; (b) σ = 0.25, appearance of attractive interactions well[50]. 
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Fig. 15.  (a) Vesicle anchored by polymer chain; (b) a simplified 
schematic model of (a). 
 
membranes and the self-consistent field theory (SCFT) 
for polymers to satisfy this need. The Helfrich theory 
has been extensively used to explore the shape 
changes of closed membranes under various condi-
tions. The diskocyte shape of the red blood cell has 
been successfully predicted[58]. For polymer systems, 
SCFT is the method of choice for numerical studies of 
equilibrium phases. The combined Helfrich-SCFT 
theory allows the simultaneous prediction of the 
shapes of vesicles with anchored polymer chains as 
well as the segment distributions of these chains[59]. 

Consider a polymer-vesicle system in Fig. 15(b). 
We assume that the vesicle membrane is infinitively 
thin but not penetrable by the polymer chains that are 
outside the vesicle. The number of solvent molecules 
is ns and that of the polymer chains is np with each 
chain of np segments. The partition function of such a 
system can be written as 
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where β = kBT, and ∫DR denotes functional integration 
over configurations of the solvents, polymers, and 
fluid membrane. s

iR  and p ( )i τR  denote the spatial 

positions of the solvent i and the segment τ of the i 
chain, respectively. m ( , )u vR  denotes the spatial po-
sition of the membrane and (u, v) are curvilinear coor-
dinates in the membrane surface. in m[ ( , )]V u v∈r R  or 

out m[ ( , )]V u v∈r R  denotes that r is inside or outside 
the volume enclosed by the vesicle membrane, respec- 

tively. The first δ-function ensures the incompressibil-
ity constraint and ρ0 is the reference density, and the 
second δ-function guarantees that the membrane is 
impenetrable by polymer chains. The density operators 

are defined as s
s s1

ˆ ( ) ( ),n i
iρ δ=

= −∑r r R  and pˆ ( )ρ r  

pp
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= −∑ ∫ r R , and the interaction Ham-

iltonian includes interactions between the polymer 
segments and solvent molecules and the membrane, 
i.e., Hint = Vps + Vpm, which can be written as 

ps s pˆ ˆd ( ) ( )Vβ χ ρ ρ= ∫ r r r  and pm pˆd dV u vβ η ρ= ∫  

m{ [ ( , )]}A u v∈r R , where χ and η are the interaction 
parameters of polymer-solvent and polymer-mem- 
brane pairs, respectively, and m[ ( , )]A u vR  represents 
the surface of the closed vesicle membrane. The Ham-
iltonian of the polymer chain can be written 

as p0 2 2
p p p0
[ ] (3/ 2 ) d [ ( ) / ]

N
H R b Rβ τ τ τ= ∂ ∂∫ , where b is 

the Kuhn length of the chain. The Hamiltonian of the 
vesicle can be written as[60] 
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where H and c0 are the local mean curvature and 
spontaneous curvature of the fluid membrane, respec-
tively. κ is the bending rigidity of the membrane, λ can 
be considered as the tensile stress acting on the mem-
brane, and out inp p p∆ = −  is the pressure difference 
across the membrane. Following the standard proce-
dure of the SCFT as described above, the following 
the self-consistent equations can be obtained[6]: 
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 s pω χρ ξ= + , (36) 

where Lagrangian multipliers ξ as well as ς denote 
incompressibility of the system and impenetrability of 
the membrane, respectively. 
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where the definition of qp and Qp is the same as eqs. 
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(13) and (14).  
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Following the standard procedure of the functional 
minimization for fluid membranes[60], we obtain the 
shape equation of the vesicle in the presence of poly-
mers: 
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where n is the unit normal vector and K is the Gaus-
sian curvature of the membrane. 

In contrast to the general shape equation of vesicles 
derived by Ou-Yang and Helfrich[60], extra (inhomo-
geneous) pressure and tensile stress terms appear in eq. 
(39). The extra pressure p m( )ζρ =r R  originates 

from the reduction of the chain conformation entropy 
due to the spatial confinement of the polymer chains 
by the impenetrable membrane. The extra tensile 
stress p m( )ηρ =r R  comes from the adhesion of the 

chain segments onto the vesicle membrane, which 
simply reflects that if the membrane adsorbs the chain, 
it reduces the tensile stress. Moreover, the adhesion of  

polymer chains onto the membrane also results in ad-
ditional pressure p m( )η ρ⋅ ∇ =n r R , which also reflects 

that the membrane tends to contact more polymer 
segments if it adsorbs polymer segments.  

To demonstrate our combined Helfrich-SCFT ap-
proach for exploring vesicle shapes under the effect of  
polymer chains, we have chosen to first investigate the 
system in which only a single polymer chain is an-
chored to the vesicle and restrict our study to a vesicle 
with axisymmetric shape. The dimensionless parame-
ters were introduced in the numerical computa-

tion, Bk Tκ κ→ , 2
B /k T bλ λ→ , 3

B /p pk T b∆ → ∆ , 

Bk Tbη η→ , 3
Bk Tbχ χ→  and Bk Tζ ζ→ . The 

length unit is pN b  in the following figures of this 

section. The detailed numerical algorithm can be 
found in ref. [59]. 

In this article, we only show some typical results 
and the discussions of relevant physical property[59]. 
As shown in Fig. 16, the vesicle anchored by polymers 
exhibit various stable and metastable shapes. 

In Fig. 16, we set η = 0.0 which means that the in-
teraction between the vesicle and chain segment is not 
considered. But as shown in Fig. 17, the shape of vesi- 

 

 

 
Fig. 16.  Typical stationary solutions, including shapes of vesicle and segment distributions of the anchored polymer chain, to the self-consistent 
equations (35) (39). The shape of the vesicle is represented by the solid curve and the density of the polymer chain is drawn in gray scale on a loga-
rithmic scale. χ = η = 0.0. 
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Fig. 17.  Effect of polymer-membrane interaction parameter η on the vesicle shapes. 

 
cles can be changed remarkably when there are inter-
actions between the vesicle and chain segment. 

As shown in Fig. 18, when the tubular vesicle is 
anchored by polymers, vesicle will exhibit pearling 
instability. Tsafrir et al.[52] have observed the pearling 
of vesicle when very few polymer chains were ad-
sorbed onto the surface of vesicle. The similar result is 
obtained when vesicle is anchored by one polymer 
chain. Instead of tubular vesicle, the pearling vesicle 
became a stable solution. This can be used to explain 
the pearling instability when slight disturbance was 
exerted on the tubular vesicle. Moreover, wherever 
vesicle is anchored by the polymer, the pearling vesi-
cle is always a stable solution of shape equation. 

In general, polymer can be anchored to inside of 
vesicle. We show an example of polymer anchored to 
outside and inside of vesicle in Fig. 19[61]. 

This method can readily be extended to the system 
of infinite membrane anchored by flexible polymer 
and completely stiff polymer (rod). In ref. [62], we 
discussed the local shape of the infinite membrane 
anchored by rod and compared relevant results with 
the infinite membrane anchored flexible polymer. 

3.5  Self-assembled morphologies of block copoly-
mers in solution 

Another application of SCFT is in the field of self- 
assembled morphologies simulation of block copoly-
mers in solution. Amphiphilic block copolymers can 
self-assemble to form various complex microstruc-  

tures, such as rod-, sphere-like micelles and vesicles, 
depending on the preparation conditions, such as the 
composition and the temperature. The aggregate for-
mation is of fundamental and practical interests as 
they have many potential applications in areas such as 
microreactors, microcapsules and drug delivery sys- 
tem[63]. Liang and coworkers[64,65] first investigate the 
aggregate morphologies of AB diblock copolymers in 
dilute solution by using SCFT in 2D. The aggregate 
morphologies dependence self-assembled from am- 
phiphilic ABC triblock copolymers in solution, on the 
interaction parameters between different blocks, have 
been investigated by the real-space implementation of 
SCFT by our group[66]. As mentioned above, SCFT 
equations (17), (21) (24) for bulk block copolymers 
can be conveniently extended to block copolymer so- 
lution[66]. In contrast to diblock copolymers in solution, 
the aggregation of triblock copolymers is more com-
plicated due to the presence of the second hydrophobic 
blocks and hence big ranges of parameter space con-
trolling the morphology. For simplicity, the end block 
A is assumed as hydrophilic (χASN = 0.5) and short 
enough and the other two blocks B and C are hydro- 
phobic and relatively long to ensure the so-called 
crew-cut copolymers. The composition of block co-
polymers is taken to be fA = 0.1, fB = 0.15 and fC = 
0.75 with the end block C being the major component 
in all simulations. Thus, we focus on considering the 
effect of the hydrophobicity of two blocks B and C of 
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Fig. 18.  (a) The tubular vesicle is obtained with parameters κ = 1.67, χ = η = 0.0, ∆p = 0.00001, c0 = 0, λ = −1.5(∆p/2)2/3, ς = 1.5; (b) the pearling 
vesicle is found with the same parameters, but a polymer chain with Np=200 anchored[59]; (c) the pearling vesicle was observed in the experiment[52]. 
 

 
Fig. 19.  (a) Shapes of polymer anchored vesicle inside ( 300ζ = − ); (b) shapes of polymer anchored vesicle outside ( 300ζ = ); 0.0χ = , 0 0.0c = , 

0.0χ = , 0.0η = , 0.03p∆ = , 0.1375λ = − , 1.67κ = . The shape of the vesicle is represented by solid curve (the red solid line is the vesicle an-
chored by polymer with Np = 200, the black solid line is the vesicle without polymer anchoring). 
 
linear ABC block copolymer on the aggregate mor-
phology. The concentration of block copolymers is set 
as p 0.1f = . We further assume the interaction pa-

rameters of the three different blocks are equal, i.e., 

AB AC BCN N Nχ χ χ χ= = = N. Similar to the imple-
mentation of SCFT equations for block copolymers in  

bulk, as mentioned above, we solved the SCFT in 2D 
for amphilic ABC triblock copolymers in dilute solu-
tion[66]. 

Similar to the self-assembly of block copolymers in 
bulk, the segregation degree of different blocks has 
significant influence on the morphology of block co-
polymers in solution as well. As shown in Fig. 20, at  
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Fig. 20.  Morphology of amphiphilic ABC triblock copolymer in dilute solution with χN =15 (weak segregation) and χASN = 0.5 [66]. A (red), B 
(green) and C (blue). (a) χBSN = χCSN = 21.5; (b) χBSN = χCSN = 22; (c) χBSN = χCSN = 25; (d) χBSN = χCSN = 26; (e) χBSN = χCSN = 30; (f) χBSN = 
χCSN = 40. 

 
 

the condition of χN = 15, namely the copolymer is in 
the weak-segregation regime, there exists the competi-
tion between polymers macrophase separation from 
the solvent and microphase separation in ABC triblock 
copolymers, which is absent in AB diblock copolymer 
systems[66]. 

In Fig. 20, with the increase of the degree of the 
hydrophobic property, namely the increase of χBSN 
(=χCSN ), various shapes of vesicles were found in Fig. 
20 (a)―(c). The vesicles formed a three-phase five- 
layer ABCBA lamellar structure in contrast to the two- 
phase three-layer ABA lamellar one for diblock co-
polymers. We noted that Eisenberg and coworkers[63] 
reported the similar spherical vesicles prepared from 
PS180-PMMA67-PtBuA37 linear triblock copolymer 
solution. But with further increasing χBSN (=χCSN ), 
which means that the solubility for blocks B and C 
decreases, the solvent cannot mix with the blocks B 
and C, and the interfacial tension goes up, then the 
block copolymer tends to macro-separate from the 
solvent and thus forms large size of the micellar ag-
gregates. Once the interactions between the solvent 
and the hydrophobic blocks B and C become very 
strongly repulsive, the repulsive forces between the A, 
B and C blocks cannot balance the repulsion from the 

solvent, therefore, the hydrophobic block C prefers to 
self-assembly into the inner part of the phase to com-
pletely avoid the contact with the solvents, then the 
system will macro-separate. It should be pointed out 
that the phenomena due to the competition between 
macrophase and microphase separation existing in 
linear ABC triblock copolymer system, however, are 
absent for diblocks. Furthermore, when the block co-
polymer is in strong segregation regime, there is no 
coexistence of macrophase and microphase separation 
at all, as shown in Fig. 20[66]. 

From Fig. 21, in contrast to the case of weak segre- 
gation, the interface between different blocks becomes 
clear due to the relatively strong interactions among 
the different blocks. It is important to note that com- 
pared to the case of weak segregation in Fig. 20, the 
macrophase separation does not exist, while peanutlike 
and long linelike micelles occur instead. However, the 
weak hydrophobic condition favors the vesicle forma- 
tion similar to the case of weak segregation. The vesi- 
cle-to-circlelike micelle transition is found with in- 
creasing the hydrophobicities of the blocks B and C.  

The block sequence of linear ABC triblock co- 
polymers has large influence on the phase behavior, 
and thus, we check the effects of different hydropho-
bicity of blocks B and C on the morphologies when 
the middle block B is strongly hydrophobic. For ex-
ample, χBSN = 30, the morphologies are shown in Fig. 
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Fig. 21.  Morphology of amphiphilic ABC triblock copolymer in dilute solution with χN = 35 (strong segregation) and χASN = 0.5 [66]; A (red), B 
(green) and C (blue). (a) χBSN = χCSN = 26; (b) χBSN = χCSN = 28; (c) χBSN = χCSN = 35; (d) χBSN = χCSN = 40; (e) χBSN = χCSN = 50. 

 
22 for χN = 15, χASN = 0.5. When χCSN < χBSN, i.e., 
the middle block B is most hydrophobic, the weaker 
hydrophobic block C, which is the major component 
of the copolymer, tends to partially mix with hydro-
philic block A. As a response, the microphase separa-
tion exists at the interface between the solvent and the 
block copolymer resulting in obscure interface be-
tween the block copolymer and the solvent. In this 
case, large compound micelles are observed and the 
block copolymers are in a disordered state due to the 
weak segregation degree of the block copolymer. With 
increasing of the hydrophobicity of the block C, the 
boundaries both among the different blocks and be-
tween the copolymer and the solvent become distin-
guished and develop a core-shell-shell structure of the 
block copolymer, then the coexisting of large com-
pound micelles with the general small micelles occurs, 
as shown in Fig. 22(b) and (c). But when χCSN further 
increases to lager than χBSN, i.e., χCSN > χBSN, the 
long linelike micelles are found, as shown in Fig. 22(d) 
and (e)[66].  

3.6  Other applications of SCFT 

Despite the above mentioned examples, the SCFT 
applications are very versatile and the following 

briefly lists further advances of SCFT in polymeric 
system. 

(1) One of the important application areas of SCFT 
is dealing with microphase separation of block co-
polymers under confinement condition. Actually, in 
many cases, the microphase separation is not in the 
free space, but is in a physically confined environ- 
ment, such as block copolymers confined in a film[67] 
or in a nanochannel[68]. The mesostructures produced 
by confined syntheses are useful as templates for fab-
ricating highly ordered mesostructured nanowires and 
nanowire arrays, and thus studies of confinement ef-
fects of block copolymers have attracted much atten-
tion theoretically[68,69]. For the simple case of copoly-
mers confined in a thin film, strong-segregation theory 
can be used to deal with microphase morphologies[69]. 
However, for more complex confinement condition, 
SCFT is the best method to investigate the phase be-
havior just by adjusting the boundary condition of 
diffusion equation (17) and interactions between the 
polymer and confinement boundary[68,70]. 

(2) It is well known that A/B binary blends phase 
separate following two mechanisms, namely nuclea- 
tion-growth (NG) and spinodal. SCFT has been em-
ployed successfully to investigate the NG phase sepa 
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Fig. 22.  Morphology of amphiphilic ABC triblock copolymer in dilute solution with χ   N = 15 (weak segregation), χASN = 0.5 and χBSN = 30 [66]. A 
(red), B (green) and C (blue). (a) χCSN = 20; (b) χCSN = 25; (c) χCSN = 30; (d) χCSN = 35; (e) χCSN = 40. 
 
ration of A/B binary blends[71]. We employed SCFT to 
study more complex nucleation mechanism. For ex-
ample, effects of AB diblock copolymers to A/B bi-
nary blends on the structure and nucleation were in-
vestigated by using SCFT[72]. We also studied the nu-
cleation of A/B binary blends in the presence of 
mesoscopic spherical particles[73]. We further investi- 
gated the nucleation nature of disordered micelles in 
highly asymmetric, sphere-forming diblock copolymer 
melts by employing SCFT[74]. These studies are of 
great importance to understand phase sepration 
mechanism and clear some uncertainties of experi-
mental results in this area[71―74].  

(3) In the above applications of SCFT, although 
thermodynamic equilibrium properties are considered, 
it should be emphasized that the SCFT technique is 
very flexible and versatile. In particular, incorporation 
of dissipative dynamics, SCFT may serve as dynamic 
SCFT, namely DSCFT (dynamic self-consistent field 
theory) [75]. We employed DSCFT to investigate mi-
crophase separation dynamics for linear ABC triblock 
copolymers (see ref. [75] for details).  

(4) Thompson and coworkers[76] proposed a theo-
retical model based SCFT and density functional the-
ory to treat nanocomposites composed of block co-
polymers and inorganic nanoparticles. Furthermore, 

SCFT have been extended to deal with the phase be-
havior of polyeletrolyte system[77] and block copoly-
mers with nanoparticles[78].  

4  Summary and outlook 

In summary, in the past two decades, the SCFT is 
based on the Gaussian model, which includes three 
contributions, namely interaction energy between dif-
ferent species, entropy from stretching of the chain 
and impressibility of the system. Many ideas of mod-
ern condensed matter and field-based theory are in-
troduced into the SCFT and thus inspiring develop-
ments have been made. Concerning the applications, 
the phase behavior for flexible polymers predicted by 
SCFT is quantitatively in agreement with the experi-
mental observations. In particular, the SCFT shows 
great ability to treat the microphase separation mor-
phologies at equilibrium state. Despite the great suc-
cess of SCFT, owing to the complexity of polymeric 
systems, at least the following listings are still a chal-
lenging task. Firstly, most of work in this area is car-
ried out in 2D due to the great computational chal-
lenge. Although most of the 2D structure can provide 
enough and important information of 3D morphology, 
the 3D structure of complicated morphologies such as 
Gyroid for complex multiblock copolymers with com-
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plex architectures is quite different from that in 2D. 
Therefore, the development of efficient computational 
technique, such as parallel algorithm to treat 3D simu-
lation and large-size simulation is desired[79,80]. Sec-
ondly, the present SCFT is limited to treat flexible 
polymer chains with Gaussian configuration. The 
formulation of SCFT for rigid rods, semi-rigid rods, 
crystalline or crosslinking blocks in which the chain 
cannot be properly described by Gaussian configura-
tion is still a great challenge. Thirdly, the present 
SCFT is based on the mean-field approximation, and 
thus, the concentration fluctuation is not included. 
However, the concentration fluctuation is very impor-
tant for dilute polymer system. One then has to con-
sider the spatial correlation effects in SCFT and there-
fore, how to introduce the time-spatial fluctuation in 
the SCFT is the key to applications of SCFT especially 
in dilute block copolymer solution. Fourthly, extension 
of SCFT to deal with the mechanics properties of in-
homogeneous polymer complex fluid, such as the vis-
coelasticity, is highly desired in respect of polymer 
materials. To our knowledge, DSCFT might be a 
promising starting point to tackle this problem. Finally, 
the remaining challenging problem for the future in 
this field is applying SCFT in various biological mac-
romolecules related to the life system. We speculate 
that the SCFT could be very useful and efficient 
dealing with the folding of proteins and biological cell 
evolution, which are of high interest in biology. 
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